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Cell migration is a fundamental
cellular process required for embryo-

nic development to wound healing and
also plays a key role in tumor metastasis
and atherosclerosis. Migration is regulated
at multiple strata, from cytoskeletal reor-
ganization to vesicle trafficking. In migrat-
ing cells, signaling pathways are integrated
with vesicle trafficking machineries in a
highly coordinated fashion to accomplish
the recruitment and trafficking of the
trans-membrane proteins toward the lead-
ing edge. Different signaling molecules
regulate cell migration in different physio-
pathological contexts, among them, phos-
phatidylinositol-4,5-biphosphate (PIP2) is
an integral component of the plasma
membrane and pleiotropic lipid signaling
molecule modulating diverse biological
processes, including actin cytoskeletal
dynamics and vesicle trafficking required
for cell migration. In this commentary,
we provide a brief overview of our current
understandings on the phosphoinositide
signaling and its implication in regulation
of cell polarity and vesicle trafficking in
migrating cells. In addition, we highlight
the coordinated role of PIPKIci2, a focal
adhesion-targeted enzyme that synthe-
sizes PIP2, and the exocyst complex, a
PIP2-effector, in the trafficking of E-
cadherin in epithelial cells and integrins
in migrating cancer cells.

PIP2 Signaling in Cell Polarity
and Vesicle Trafficking

Cell migration occurs as a result of multi-
ple coordinated events, including external
signaling cues, cytoskeletal reorganization,
cell polarity and polarized trafficking of

signaling molecules.1,2 Defects in any of
these steps impair cell migration. In direc-
tionally migrating cells, establishment and
maintenance of cell polarity and polarized
trafficking are indispensable and different
signaling molecules play role in these pro-
cesses.1-3 Among them, PIP2 and its phos-
phorylated product, phosphatidylinositol
3,4,5-triphosphate (PIP3), are the crucial
players in both maintaining cell polarity
and the polarized trafficking of signaling
molecules.4-8 The spatio-temporal genera-
tion/accumulation of these phosphoino-
sitides at the leading edge of migrating
cells imparts morphological and functional
asymmetry to migrating cells.8,9 These
phosphoinositides are directly involved in
the recruitment/activation of effectors or
signaling molecules, such as WAVE2,10

RhoA, Rac1, Cdc42,11,12 N-WASP, PKA
and IQGAP1,13 to the leading edges of
migrating cells is the commonly under-
stood mechanism of phosphoinositide
regulation of cell polarity and cell migra-
tion. An asymmetric distribution of phos-
phoinositides is required for migrating
cells, which is achieved by polarized
recruitment and activation of PIP2- and
PIP3-generating enzymes at the leading
edges.7,14,15 However, the functional role
of PIP2-generating enzymes in maintain-
ing PIP2/PIP3 pool at the leading edge
is poorly defined except in leukocytes
where some PIPKI isoforms are known
to maintain phosphoinositide asymmetry
during cell migration.7,14 Additionally, the
expression of different PIPKIs isoforms
in cells and the cell type involved may
also give rise to differences in the PIPKI
enzymes involved in this process.

Localized PIP2 generation is crucial for
the proper sorting of vesicles to intracellular
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sites and/or for the fusion of these vesicles
with the plasma membrane.5,6 Several
studies have demonstrated the PIP2-
induced assembly of actin-containing com-
plexes propelling endosomal vesicles toward
the plasma membrane.16-18 PIPKIc knock-
out studies also support the role of PIP2
on various aspects of endosomal vesicle
trafficking.6,19 Cell polarity and polarized
vesicle trafficking are inter-dependent
cellular processes.3,4 The role of endo-
somal vesicle trafficking in regulating cell
polarity and cell migration is emerging
with several studies depicting the coordi-
nated role of these two processes in cell
migration,2,4,20 such as FAK/RACK121

and ESCRT complexes,22,23 integrate the
endosomal trafficking with cell polarity
and migration. Recently, we demon-
strated the coordinated role of the PIP2-
generating enzyme PIPKIci2, with talin
and the exocyst complex. All are recruited
to the leading edge of migrating cells,
controlling cell polarity and cell migration
in tumor cells.4 Interestingly, PIPKIci2
and the exocyst complex are also essential
components in maintaining epithelial
cell polarity by regulating E-cadherin
trafficking.24,25 Thus, PIPKIci2 and
PIP2-signaling are potential integrators
of vesicle trafficking and cell polarity
in both polarized epithelial cells and
directionally migrating cells (illustrated
in Fig. 1). In migrating cells, these com-
plexes controlled the polarized trafficking
of integrin molecules required for nascent
focal adhesion formation at the leading
edge of the migrating cells.4 In this
complex, talin and exocyst are PIP2-
interacting and PIP2-regulated molecules
playing key roles in cell polarity and
vesicle trafficking. The individual knock-
down of PIPKIci2, talin or exocyst com-
plex displayed the same phenotypic defect
on cell polarity and polarized recruitment
of integrin molecules to the leading edges.
However, the precise mechanism how
PIPKIci2, exocyst complex and talin
accomplish the polarized trafficking and
exocytosis of integrin molecules at the
leading edge membrane is not clear and
needs further investigation. In addition,
how PIP2- and PIP3-generating enzymes
coordinate with each other to regulate the
localized pool of PIP2/PIP3 needed for
controlling cell polarity and cell migration

still remains sketchy. PIPKIci2 is specif-
ically recruited to focal adhesions26 and is
solely responsible for PIP2-generation at
focal adhesion sites.27 PIPKIci2 has clear
advantage over other PIPKIs isoforms in
its recruitment to nascent focal adhesion
sites at the leading edge of migrating
cells due to its intimate association with
talin, a cytoskeletal protein recruited to
the focal adhesion sites.26 Both talin and
PIPKIci2 are inter-dependently recruited
to the nascent focal adhesion sites.4,28

However, the functional role of PIP2
synthesis in vesicle trafficking in and out
of focal adhesion sites during cell adhe-
sion and migration is not precisely under-
stood. Unlike cell migration and polarized
integrin recruitment, the knockdown of
PIPKIci2 or exocyst complex displayed
minor defects in cell adhesion, indicating
phosphoinositide-dependent vesicle traffick-
ing at focal adhesions could be differenti-
ally regulated during cell adhesion and
cell migration, although cell adhesion
requires vesicle trafficking and regulated
exocytosis for the assembly of functional
adhesion complex. Investigation of
PIPKIci2 in the regulation of RhoGTPases
and vice versa is also an important aspect
of cell polarity and vesicle trafficking in
PIPKIci2-regulated cell migration as
RhoA, Rac1 and Cdc42 are upstream
target molecule of type I PIPKI.29

PIP2 Signaling and Exocyst
Complex in Polarized Recruitment
of b1-Integrins at Leading Edge

of the Migrating Cells

How is polarized integrin recruitment/
trafficking achieved at focal adhesion
sites during cell adhesion and migration?
Leading edge extension and its attachment
to the surrounding ECM protein is a
crucial initial event in cell migration.2,3

The activated β1-integrin localized at
leading edge lammellipodium guides
migration and regulates the migration
force.30 The polarized recruitment/traffick-
ing of integrin molecules, formation of
new adhesion sites at the leading edge
and dissolution of adhesion sites at the
trailing edge is the widely believed dogma
in cell migration.2,3,20,31 However, signal-
ing molecules intimately involved in
polarized trafficking of integrin molecules

required for nascent focal adhesion forma-
tion at leading edge of migrating cells is
also poorly defined. Similarly, complexity
lies in defining polarized integrin traffick-
ing in migrating cells, as integrin mole-
cules throughout the cell surface of even a
single cell undergo endo-exocytic traffick-
ing at varying rates and by different
mechanisms31 and defining this phenom-
enon is technically challenging. PIPKIci2
recruitment to nascent focal adhesion sites
at the leading edge of migrating cells and
its regulation on polarized recruitment of
β1-integrins via its association with exocyst
complex could be one of the mechanisms
migrating cells utilize during cell migra-
tion. PIPKIci2 is required for talin and
exocyst complex recruitment, both PIP2-
regulated and PIP2-interacting proteins,
to the leading edge.4 The precise mechan-
isms for how PIPKIci2 and exocyst
complex coordinate with each other to
accomplish the polarized integrin traffick-
ing/exocytosis at nascent focal adhesion
sites needs further investigation. Does it
participate in a core machinery of vesicle
exocytosis by generating the localized pool
of PIP2 at focal adhesion building sites?
How do PIPKIci2-mediated PIP2 genera-
tion and exocyst complex recruitment
at membrane couple with the complex
mechanism of exocytosis? Does PIPKIci2
provide the discreet pool of PIP2-required
for recruitment of cargo-laden vesicle-
associated exocyst complex at leading
edge? The exocyst complex consists of
eight different subunits (Sec3, Sec5, Sec6,
Sec8, Sec10, Sec15, Exo70 and Exo84)
and its two subunits Sec3 and Exo70
directly interact with PIP2 via conserved
basic residues in their C-terminus.32

PIPKIci2 and the exocyst complex exten-
sively co-localize at focal adhesions, and
the association of exocyst complex with
PIPKIci2 at focal adhesion sites could be
a mechanism to facilitate the localized
PIP2-generation and polarized exocytosis.

Furthermore, the functional role of
PIPKIci2 in cell migration is largely defined
in 2D migration where focal adhesions are
the predominant structural components and
their functional role is more pronounced.
However, in more physiologically relevant
conditions such as 3D systems, where
focal adhesions are less predominant,
the significance of PIPKIci2-regulated
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cell migration and polarized signaling has
yet to be investigated.

PIP2-Generating Enzymes
in Cancer

Type I PIPKI enzymes are largely res-
ponsible for PIP2 generation in mam-
malian cells.4 Different isoforms including
PIPKIa, PIPKIβ and PIPKIc regulate cell
migration in different cell types.4,7,14,28,34,35

Most migration and/or invasion studies
we and other laboratories conducted defin-
ing the role of PIPKIc and PIPKIci2
are cancer cells such as MDA-MB-231,
HeLa, MDA-MB-435, SKBR3 and
HCT116.4,28,34,35 These studies suggest
pro-tumorigenic function of the PIPKIc
and PIPKIci2 in cancer as cell migration
and invasion are the pivotal cellular

processes required for cancer metastasis.
Corroborating with pro-migratory and
pro-tumorigenic function of PIPKIc in
cancer cells, the survival of breast cancer
patients inversely correlates with increased
PIPKIc expression,34 although thorough
investigation of different PIPKIc isoform
expression and their role in breast and
other cancers need to be investigated.
Furthermore, the role of PIPKIci2 in
the polarized trafficking of integrin mole-
cules has the potential to impact our
understanding of the patho-biological
mechanisms of cancer metastasis. Several
molecules implicated in tumorigenesis,
such as Rab11, ARF6 and mutant-p53,
modulate the integrin trafficking, resulting
in enhanced migration associated with
metastasizing tumor cells.31,33 Under-
standing how PIPKIc and PIPKIci2 in

association with exocyst complex regulate
the vesicle trafficking process can shed
light into how highly metastatic tumor
cells can exploit phosphoinositide signal-
ing in novel ways.

Contradicting with their pro-migratory
function, PIPKIc and PIPKIci2 are also
involved in epithelial morphogenesis by
regulating E-cadherin trafficking at adhe-
rens junctions.24,25 Similarly, exocyst
complex are also involved in E-cadherin
transport in epithelial cells and integrin
trafficking in migrating tumor cells.4,25

The integrity of E-cadherin-mediated
cell-cell contact formation is crucial for
maintaining cell polarity and has anti-
migratory/anti-tumorigenic functions in
epithelial tissues. In epithelial cancers,
loss of E-cadherin-mediated cell-cell con-
tact facilitates tumor metastasis. Thus,

Figure 1. Proposed model depicting the role of PIPKIci2 and exocyst complex in polarized E-cadherin and integrin trafficking. (A) In normal epithelial
cells, PIPKIci2 association with exocyst complex mediate the polarized trafficking of E-cadherin molecules to maintain the adherent junctions at cell-cell
contact sites. The loss of either PIPKIci2 or exocyst complex results in defect in E-cadherin transport to adherent junction and loss of cell polarity. (B) In
migrating tumor cells that have already lost E-cadherin, the PIPKIci2 and exocyst complex mediate polarized recruitment/trafficking of integrin molecules
toward the direction of cell migration. Cell migration induces the integration of PIPKIci2, talin and b1-integrin into the complex either in plasma
membrane or in intracellular recycling compartments. The PIP2 generated in the complex facilitates the assembly of the exocyst complex. Thus, the
coordinated activity of PIPKIci2 and the exocyst complex in concert with talin promotes the polarized recruitment and trafficking of integrin molecules to
leading edge plasma membrane. Loss of PIPKIci2 or the exocyst complex or talin compromises the polarized recruitment/trafficking of integrin impairing
cell polarization and directional cell migration.
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PIPKIc/PIPKIci2 and exocyst complex
have opposing roles in normal epithelial
vs. tumor cells (see Fig. 1). The investiga-
tion of how this protein complex functions
with other regulatory mechanisms in
epithelial-mesenchymal transition (EMT)

is going to be an extremely interesting area
of research in cancer biology.
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